

Stack Air Emission Inspection

ACS Textiles (Bangladesh) Ltd. & ACS Towel Limited

Inspection Ref. No.: A/S 11716

Contact Us

Corporate Head Office:

Flat: 14A, Level: 14, Building No.: 02 Confidence Center, Kha-09 Shahjadpur, Gulshan, Dhaka-1212

S +88 02 55048399, 01977047336

info@greenbudbd.com

www.greenbudbd.com

Chattogram Office:

House 64, Road 4, Block B, Chandgaon, Chattogram

	General Inf			
	General Ini	ormation 		
Invoice Reference No: GB	/2024/08/80	Inspection Date: 09.09	.2024	
Inspection Reference No: A	A/S 11716	Inspection Duration: 1	1am-5pm	
Report Generation Date:	15.09.2024	Inspection location: Ex	chaust outlet	
Report Submission Date:	22.09.2024	Inspection Description	: Stack/Point source	
Inspection Standards: 200	4/108/EEC	emission		
Company Name:			Contact Person:	
ACS Textiles (Banglades) ACS Towel Limited	n) Ltd. &	Mo	d. Ruhul Alam Sharif	
Address: Tetlabo, Barpa, F Narayangonj.	Rupgonj,		GM, Compliance	
	On Site Inspe	otion Toom		
	On Site Hisper	Cuon Team		
Md. Shaharia Ahmed			Tanzir Hosen	
Executive (Operation)			Chemist (Operation)	
B.Sc. in Environmental Sci	ence		B.Sc. in Chemistry	
Report Prepared by:			Quality Checked:	
Majharul			Mosb	
Majharul Islam			Mosharof Hossain	
Executive (Operation)			t Manager (Operation)	
B.Sc. in Environmental Sci	ences	M.Sc. & B.Sc. in Environmental Science		

Report Approved by:

Engr. Syed Tasnem Mahmood

Chief Environmental Engineer & CEO
B.Sc. & M.Sc. (Civil and Environmental Engineering)
MIEB No.: M/35960

Introduction

Air pollution is a kind of pollution that can also be a trans-boundary problem requiring agreement by governments world-wide. The Inter-Governmental Panel on Climate Change (IPCC) has predicted a possible rise in the average global temperature of 1 degree Celsius by 2025 and 3 degrees Celsius before the end of the 21st century. In the last few hundred years the rising human population and industrialization have increased the levels of gases like carbon dioxide, methane, nitrous oxide etc. in the atmosphere which is responsible for global warming. Despite the uncertainties and disputes, governments worldwide have agreed that precautions need to be taken now.

In a way, air emissions can happen by the gases and/or particulates that are released from the combination, decomposition, or combustion of materials. Stacks are the outlet of emissions from utility, machines, and other avenues for gases to escape when they are created. These emissions can be harmful to people and the environment and represent an environmental risk. Stacks from industrial processes will carry pollutants such as **SOx**, **NOx**, **particles**, **solvents** and **other dusts** and **gases**. These can have a detrimental effect on local air quality and for this reason such emissions are often regulated. Typically, this regulation requires measurement of the concentration of these pollutants on a regular basis, often referred to as periodic stack emission monitoring. The purpose of the monitoring will be to determine whether the emissions are below the limits.

As a process of complying with the requirement ACS Textiles (Bangladesh) Ltd. & ACS Towel Limited has hired GREENBUD Testing & Inspection Services Private Limited to assess its environmental performance, in terms of air pollution. This report focuses on the inspection of basic Air emission parameters according to IFC/World Bank and Department of Environment (DoE) of Bangladesh.

Method of Sampling

Analysis of the exhaust flue was done using direct reading instruments. So, there was no separate sampling used for this analysis. During the analysis, a standard work instruction stated in the TP-GB-01 was followed.

Method of Analysis

The following methods were used to analyze the stack emission parameters:

Parameters	Methods
SO ₂ (Sulfur Dioxide)	Electrochemical
CO (Carbon Monoxide)	Electrochemical
CO ₂ (Carbon Dioxide)	Electrochemical
O ₂ (Oxygen)	Electrochemical
NO _x (Oxides of Nitrogen)	Calculated
SPM (Suspended Particular Matter)	Gravimetric
Flue Temperature	Thermocouple
Flue Pressure	Pressure Sensor

Measurement Uncertainties

The following measurement uncertainties were assigned to the respected parameters:

Gases			±2%		
Temperature			±2°C		
Pressure			0.05%		

Description of Utilities

Sl. No.	Brand Name	Model No	Serial No	Made By	Fuel	Capacity
Generator-01	Waukesha	VHP5904GSID	-	USA	Natural Gas	900 KW
Generator-02	Waukesha	VHP5904GSID to Conversion LTDE	-	USA	Natural Gas	900 KW
Generator-03	Waukesha	VHP5904GSID	-	USA	Natural Gas	900 KW
Generator-04	MTU	20V4000L32	-	Germany	Natural Gas	1948 KW
Generator-05	MTU	20V4000L32	-	Germany	Natural Gas	1948 KW
Generator-06	Jenbacher	JGS 320GS-NL	-	Austria	Natural Gas	1064 KW
Generator-07	Jenbacher	JGS 320GS-NL	-	Austria	Natural Gas	1064 KW
Generator-08	Waukesha	VHP5904GSID	-	USA	Natural Gas	900 KW
Generator-09	Waukesha	VHP5904GSID	-	USA	Natural Gas	900 KW
Generator-10	Jenbacher	JGS 320GS-NL	-	Austria	Natural Gas	1064 KW
Generator-11	Waukesha	VHP5904LTDE	-	USA	Natural Gas	900 KW
Generator-12	Waukesha	VHP5904 LTDE	-	USA	Natural Gas	900 KW
Boiler-01	Thermax	SM: 100DL/10.54/11E	Ba. Bo. 8672	India	Natural Gas	10 Ton/hr.
Boiler-02	Thermax	SMt 100C/10.54/27	Ba. Bo. 5966	India	Natural Gas	10 Ton/hr.
Boiler-03	Thermax	SMt 100DL/10.54/1001	Ba. Bo. 6653	India	Natural Gas	10 Ton/hr.
Boiler-04	Daelim	-	Ba. Bo. 3799	Korea	Natural Gas	6 Ton/hr.
Boiler-05 (EGB)	DDFC	-	Ba. Bo. 7511	Pakistan	Exhaust Gas	2700 kg/hr.
Boiler-06 (EGB)	Forbes Vyncke Pvt. Ltd.	-	Ba. Bo. 8325	India	Exhaust Gas	3050 kg/hr.
Boiler-07 (EGB)	Forbes Vyncke Pvt Ltd.	-	Ba. Bo. 8408	India	Exhaust Gas	3350 kg/hr.
Boiler-08 (EGB)	Forbes Vyncke Pvt Ltd.	-	Ba. Bo. 9359	India	Exhaust Gas	2700 kg/hr.

Standard Permissible limit

Relevant Standard Permissible limit for Generator air emission is shown below:

Refe	rence of Relev	ant Standard	Standards for Stack Emission from Industries or Projects (Generator)			
reservant standard			SPM (mg/Nm ³)	NO _x	SO ₂	
	Diesel	New (Running after 2020)	50	200	200	
	Diesei	Existing (Running before 2020)	80	400	400	
Air Pollution Control	Natural	New (Running after 2020)	-	200	-	
Rules-2022 ¹	Gas	Existing (Running before 2020)	-	400	-	
	LPG, LNG etc.	-	50	200	400	
IFC/World Bank1F ² (mg/Nm ³)		Gas	NYS	200 (spark ignition) 400 (Dual Fuel) 1600 (Compressed ignition)	NYS	
(mg/N	VIII-)	Liquid	NYS	1460	NYS	
		Solid	NYS	NYS	NYS	

[NYS= Not Yet Set]

Relevant Standard Permissible limit for Boiler air emission is shown below

Reference of Relevan	it Standard			al unit (Parameter dard)
		SPM (mg/Nm ³)	NOx (mg/Nm ³)	SO₂ (mg/Nm ³)
D.E. (Alla D.H. dian	Gas	-	150	
DoE (Air Pollution Control) ³	Oil	200	300	250
(mg/Nm ³)	Coal	250	400	250
(IIIg/IVIII)	Husk	250	400	
IEC/W14 D1-4	Gas	N/A	320	NYS
IFC/World Bank ⁴ (mg/Nm ³)	Liquid	150	460	2000
	Solid	150	650	2000

[NYS= Not Yet Set; N/A= Not Applicable]

	STeP-OEKO TEX STANDARD PERMISSIBLE LIMIT								
		For Gas/ Diesel Genera	ator >0.3MW						
Parameter			Minimum	Advanced	Excellent				
(Carbon Mo	noxide) Co	O: (mg/Nm ³)							
Gaseous Fuel			500	250	150				
Diesel Fuel			500	250	150				
(Nitrogen o	xides) NO2	$\kappa: (mg/Nm^3)$							
Gaseous Fuel			500	300	100				
Diesel Fuel			1000	500	200				
(Sulphur D	ioxide) SO	2: (mg/Nm ³)							
Gaseous Fuel			200	100	30				
Diesel Fuel			900	400	60				

¹ Air Pollution Control Rules (2022), Schedule-05, Department of Environment, Govt. of Bangladesh

² IFC (2007), Environmental, Health and Safety Guidelines: Environmental Air Emissions and Ambient Air Quality, IFC/World Bank Group

³ Air Pollution Control Rules (2022), Schedule-05, Department of Environment, Govt. of Bangladesh

⁴ IFC (2007), Environmental, Health and Safety Guidelines: Environmental Air Emissions and Ambient Air Quality, IFC/World Bank Group

Facility Operations - Equipment/Combustion. Parameters and Limit values for facilities - WHO and Globally Regulated Pollutants⁵:

	ZDHC Air Emission Guidelines									
Sl. No.	Parameter	Source	Fuel Type	Foundational	Progressive	Aspirational	Concentrations Unit			
1			Solid	650	300	200	mg/Nm³			
2		NOx	Liquid	460	250	85	mg/Nm³			
3			Gas	400	150	40	mg/Nm³			
4			Solid	800	500	100	mg/Nm³			
5		СО	Liquid	650	400	100	mg/Nm³			
6	Facility		Gas	500	300	100	mg/Nm³			
7	Combustion		Solid	750	650	300	mg/Nm³			
8		SOx	Liquid	600	450	300	mg/Nm³			
9			Gas	400	300	100	mg/Nm³			
10		PM	Solid	500	300	100	mg/Nm³			
11			Liquid	300	100	50	mg/Nm³			
12			Gas	100	50	20	mg/Nm³			

⁵ ZDHC Air Emissions Position Paper (Version 1.0) _January 2021

Stack Air Emission Inspection Results

			C	btaine	d result f	rom Util	ities			
	SPM	PM _{2.5}	PM_{10}	O_2	CO	NO	NO ₂	CO ₂	NO _x	SO ₂
SL. No	(mg/Nm³)	(mg/Nm³)	(mg/Nm³)	(%)	(mg/Nm³)	(mg/Nm³)	(mg/Nm ³)	(%)	(mg/Nm³)	(mg/Nm³)
Generator-01	18.6	7.8	10.8	6.5	228	112	64.1	5.2	188.6	0
Generator-02	19.1	7.5	12.1	6.8	231	115	59.9	5.3	184.8	0
Generator-03	20.3	8.5	13.0	6.2	228	111	66.2	5.5	182	0
Generator-04	19.2	7.8	13.5	8.4	225.6	117	64.4	6.2	193.9	0
Generator-05	18.9	7.9	14.4	9.2	226.4	109.4	65.2	5.4	175.2	0
Generator-06	18.2	7.7	10.5	6.4	233	119.3	64.4	6.2	193.9	0
Generator-07	19.8	8.4	11.4	7.2	232	118.4	59.5	6.2	187.7	0
Generator-08	18.9	7.6	14.6	6.2	190	105.3	58.5	6.3	163.8	0
Generator-09	18.2	8.3	10.1	5.5	198	107.4	52.1	5.6	173.4	0
Generator-10	18.8	8.5	10.2	5.7	197	111.6	51.4	5.3	167.3	0
Generator-11	19.8	8.4	12.4	7.2	212	111	59.5	5	187.7	0
Generator-12	18.5	8.3	12.3	6.3	217	112	62.4	5.3	188.7	0
Boiler-01	16.1	7.5	11.1	7.2	184	85	38.3	4.7	123.3	0
Boiler-02	15.8	7.2	10.9	7.3	181	78	36.4	4.3	114.4	0
Boiler-03	15.6	7.3	11.3	6.9	180	74	35.9	4.8	109.9	0
Boiler-04	16.2	7.4	12.1	7.1	179	81	34.6	4.6	115.6	0
Boiler-05 (EGB)	15.6	7.8	9.2	5.2	180	55	37.5	4.5	155.4	0
Boiler-06 (EGB)	15.2	7.5	8.7	5	178	52	38.6	4.8	158	0
Boiler-07 (EGB)	15	7.5	8.5	5.5	172	54	38.9	4.6	157	0
Boiler-08 (EGB)	15.3	7.2	9.5	4.9	187	57.2	31.7	4.2	88.2	0

SL. No.	Flue Temperature (°C)	Inner Diameter of Stack pipe (m)	Flow (m/s)	Running Hour (yearly)
Generator-01	414.8	0.3048	5.4	4405
Generator-02	406.7	0.3048	4.3	7961
Generator-03	395.3	0.3048	5.3	8257
Generator-04	415.4	0.4572	5.1	8405
Generator-05	412.3	0.4572	5.2	6469
Generator-06	395.3	0.3556	5.3	5163
Generator-07	421.5	0.3556	5.2	5163
Generator-08	413	0.3048	5.1	2257
Generator-09	412.8	0.3048	5.4	4612
Generator-10	405.6	0.3556	5.3	7235
Generator-11	407.6	0.3048	5.1	7958
Generator-12	411.8	0.3048	5.3	7506
Boiler-01	224	0.8128	4.6	4414
Boiler-02	221	0.8128	4.9	6146
Boiler-03	213	0.8128	4.7	5127
Boiler-04	207	0.8128	4.3	2713
Boiler-05 (EGB)	189.4	0.3048	3.9	8328
Boiler-06 (EGB)	198.2	0.3048	4.1	8328
Boiler-07 (EGB)	165.3	0.3048	4.0	8328
Boiler-08 (EGB)	173.2	0.3048	4.2	8328

^{**}Abbreviations and Acronyms: CO = Carbon monoxide; $CO_2 = Carbon dioxide$; $O_2 = Oxygen$; $SO_2 = Sulfur dioxide$; $SPM = Suspended Particulate Matter, <math>PM_{2.5} = Particulate Matter 2.5$, $PM_{10} = Particulate Matter 10$, $NOx = Oxides of Nitrogen, NO_2 = Nitrogen Dioxide, mg/Nm^3 = milligram per normal cubic meter$

Mass Emission rate⁶ (Hourly):

			Pollutants		
SL./No	SPM (Kg/hr.)	NO _x (Kg/hr.)	SO ₂ (Kg/hr.)	CO (Kg/hr.)	CO ₂ (Kg/hr.)
Generator-01					
Generator-02					
Generator-03					
Generator-04					
Generator-05					
Generator-06	There wil	ll be no emissi	ion as all the	generators are	connected
Generator-07		thro	ough EGB Bo	oilers	
Generator-08					
Generator-09					
Generator-10					
Generator-11					
Generator-12					
Boiler-01	0.07525	0.58430	0	0.87339	431.15241
Boiler-02	0.07914	0.58099	0	0.92074	422.73510
Boiler-03	0.07618	0.54416	0	0.89273	460.07791
Boiler-04	0.07328	0.53022	0	0.82236	408.42463
Boiler-05 (EGB)	0.00934	0.09437	0	0.10949	52.89852
Boiler-06 (EGB)	0.00939	0.09898	0	0.11170	58.21122
Boiler-07 (EGB)	0.00972	0.10316	0	0.11320	58.50902
Boiler-08 (EGB)	0.01023	0.05977	0	0.12694	55.09956

 $^{^6}https://www.researchgate.net/post/How_can_I_calculate_estimation_of_air_pollutants_load_per_year_in_tons_for_the_Stack_emission$

Mass Emission rate⁷ (Yearly):

			Pollutants						
SL./No	SPM (Kg/yr.)	NO _x (Kg/ yr.)	SO ₂ (Kg/ yr.)	CO (Kg/ yr.)	CO ₂ (Kg/yr.)				
Generator-01									
Generator-02									
Generator-03									
Generator-04									
Generator-05									
Generator-06	There will	be no emission	n as all the gene	erators are conn	ected through				
Generator-07			EGB Boilers	S					
Generator-08									
Generator-09									
Generator-10									
Generator-11									
Generator-12									
Boiler-01	332.14352	2579.10524	0	3855.13635	1903106.74610				
Boiler-02	486.38941	3570.74741	0	5658.84260	2598129.92966				
Boiler-03	390.58240	2789.92062	0	4577.01771	2358819.43127				
Boiler-04	198.81700	1438.47534	0	2231.07182	1108056.03095				
Boiler-05 (EGB)	77.80920	785.89307	0	911.80272	440538.89844				
Boiler-06 (EGB)	78.21398	824.33541	0	930.21385	484783.02988				
Boiler-07 (EGB)	80.95275	859.10469	0	942.73758	487263.15689				
Boiler-08 (EGB)	85.16588	497.79308	0	1057.15292	458869.15724				

 $^{^{7}} https://www.researchgate.net/post/How_can_I_calculate_estimation_of_air_pollutants_load_per_year_in_tons_for_the_Stack_emission$

Discussion and Recommendation

ACS Textiles (Bangladesh) Ltd. & ACS Towel Limited have hired GREENBUD Testing & Inspection Services Private Limited to inspect their stack air emissions of Twelve generators, Four Natural Gas Boilers and Four EGB boilers. GREENBUD has inspected all the required air quality parameter according to the Air Pollution Control Rules-2022, ZDHC Air Emission Guidelines'2021 where parameters were found in progressive level, STeP BY OEKO-TEX and the IFC/World Bank emission standard. According to the inspection result the findings are given below:

➤ Oxides of Nitrogen, Sulphur Dioxide & Carbon Monoxide emission from the generators and boilers have been found within the Air Pollution Control Rules-2022, ZDHC Air Emission Guidelines'2021, STeP BY OEKO-TEX, IFC/World Bank standard emission limit.

However, the proponent needs to consider that the concentration of parameters presented in this report is instantaneous data which had been found during inspection and may vary over the period of time.

Obtaining above results, for further improvement recommendations are given below:

- ✓ Periodic maintenance of utilities according to manufacturer's instruction
- ✓ Installation of on-site abatement measures to control the emission level.
- ✓ Control air-fuel mixing ratio and excess air to reduce the nitrogen oxides emission.
- ✓ Factory must check Air emission quality periodically.

Factory is suggested to assess the Air Emission Quality at least annually if all other setups are constant.

Engr. Syed Tashem Mahmood

CEO and Chief Environmental Engineer

GREENBUD

MIEB No.: M/35960

ISO 14001 certification Number.: EA/15/IN/16050 ISO 50001 certification Number.: ENMS/16/IN/533

APPENDIX

Figure: Stack Air Emission Sampling

Inspection Instrument

Air Pollution contamination of the atmosphere caused by the discharge, accidental or deliberates of a wide range of toxic substances. Often the amount of the released substance is relatively high in a certain locality, so the harmful effects are more noticeable. The major sources of air pollution are transportation engines, power and heat generation, industrial processes and the burning of solid waste. A new source of air pollution is an increasing 'hole' in the ozone layer in the atmosphere above Antarctica, coupled with growing evidence of global ozone depletion. Air pollution has also long been known to have an adverse effect on human beings, plants, livestock and aquatic ecosystem through acid rain. Recently as in other parts of the world air pollution has received priority among environmental issues in Asia. This problem is acute in Dhaka, the capital of Bangladesh and also the hub of commercial activity.

GREENBUD Testing & Inspection Service Private Limited high-quality equipment is available to assess stack emission air quality. Now most of the customers are committed to environmental aspect. As a result, Air Quality test is a vital requirement of customers. So GREENBUD is also committed to assess Stack Air Emission Quality with transparency & Quality. To assess this stack air emission, we have to follow some standards, such as ECR, 1997, WHO, DoE, World Bank etc. GREENBUD has stack air emission quality testing machine from Testo and the model's name is Testo-340. To measure the particulate matter in the flue gas, GREENBUD Testing & Inspection Service Private Limited use a well-known versatile ESS-100 air quality sampler by Echotech.

Instrument Description

Parameter	Resolution	Accuracy	Range
Temp Measurement			
Flue Temperature	0.1°C/F	+2.0°C +0.3% reading	0-1200°C/32 -2200°F
Inlet Temperature	0.1°C/F	+1°C +0.3% reading	with suitable probe
			0-50°C/32-122°F
Gas Measurement			
Oxygen	0.1%	+0.2%*1	0-25%
Carbon Monoxide,	1 ppm	+20ppm <400ppm*1	0-100000ppm
		+5% <5000ppm	
		+10% >5000ppm	
Nitric Oxide	1 ppm	+5ppm <100ppm*1	0-5000ppm
(optional)		+5% >100ppm	
Nitrogen Dioxide	1 ppm	+3ppm<20ppm	100ppm
(optional)		+5ppm<100ppm	
Sulphur Dioxide	1 ppm	+5ppm<100ppm	0-5000ppm
(optional)		+5%>100ppm	
Pressure	0.1mbar	+0.5% full scale	150 mbar
Carbon Dioxide	0.1%	+0.3% reading	0-99.9%
Losses	0.1%	+1.0% reading	0-99.9%
	0.170		
Efficiency	0.1%	+1.0% reading	0-99.9%
Excess Air	0.1%	+0.2%	0-2885.0%
CO/CO2 ratio*2	0.0001	+0.0001	0-0.9999
Poison Index *2	0.01%	+0.01	0-99.99
Ambient Operating Range		-5°C to +50°C/10% to 90% RH non condensing	

High Volume Sampler:

Parameter	Measuring Range		
SPM	0 – 1000 mg		
PM ₁₀	0 – 1000 mg		
PM _{2.5}	0 – 1000 mg		
Air flow	0-40 lpm		
Flue Temperature	0-650°C		

Inspection Reference No: A/S 11716

Inspection Reference No: A/S 11716

ACCREDITATION CERTIFICATE

Issued under the authority of Bangladesh Accreditation Act, 2006 by Bangladesh Accreditation Board (BAB), Ministry of Industries to

GREENBUD Testing & Inspection Services 14A, Level-14, Building 2, Confidence center Kha-09, Sahajadpur, Gulshan, Dhaka-1212, Bangladesh

This is to certify that this

Inspection Body(Type-A)

is accredited in accordance with the international standard

ISO/IEC 17020:2012

in respect of the associated scope, subject to the terms and conditions governing the relevant conformity assessment body (CAB) accreditation.

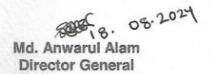
Certificate Number

05.003.18

Accreditation Date

: 28 June 2018

Date of Issuance


: 18 Aug 2024 (2nd Renewal)

Date of Expiration

: 27 June 2027

This certificate must be returned on request; reproduction must follow BAB guidelines. For the specific scopes to which this accreditation applies, please refer to the Directory of CABs at BAB website.